
 

Generalized Method of Moments
minimumm

Suppose we have l moment conditions

E g Wi g s where Wi Yi Xi li
is the data

Recall the criterion function
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the true parameter Oo minimizes 410 for any choiceof
norm A'A However if E g wino 0 then different

choices of A'A yield a different minimizer We refer to

such value as the pseudo true value

GMM focuses on the sample version of the criterion function
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Identification

Assume E Li Xi has full column rank k to see theimplications let
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aka
and let Li ai Xzi
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Suppose there's a 0 O such that EZi Xi 0 0 Then
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Then thismustmatrix is p d iff be Othe exogenous variables

are all linearly indep
this requires that Lii does
not form part of Kai i.e
instruments are not in
the outcome model



Then
Tz Or t 02 0

IT O 0

Notice that if either Oj is 0 the other must be zero as
well but this would contradict the fact that 040

Hence suppose I 0 0 such that Th 02 0 This means

that the matrix IT is rank deficient

Therefore we showed that

rank E Li Xi I k rank IT Ky

so that the rank condition is equivalent to another rank

condition in terms of the first stage parameters i.e sufficiently

strong linear relationship between Lri and Xvi

From the moment condition we obtain
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therefore the Gram matrix is invertible
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Consistency

Assume

i An TA where A is a finite matrix

ii EhiXi has rank K
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Then pin can T P where Pilant is defined as follows
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Notice that by Cii we have that Exile A'A Ehixi is p.d
To see this
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matrix is bounded away from zero



Write
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AsymptoticNormality

Assume in addition the following
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V Elli Zizi is positive definite

Notice that Civ implies that Eli tiki is Oct Toseethis
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EfficientGMI

The lower bound on the asymptotic variance is given by
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To see why this is true we need to show that
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suppose we use a matrix Boxe that has rank k to linearly transform
Li into a vector of k instruments Way Belie we then
run IV with Wi
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recall that the Asy var of the efficient GMM is V arr Q
Then we want to show
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Notice that we can find the B suchthat it attains thelowerboundU't
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We can estimate it as
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Hypothesistesting

We consider the test Ho p po
Ha 13 pots delk suchthat

840
The proposed statistic is
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Notice that f A 5 S 0 because VCA is posdef and bounded

Hence by taking limits
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In other words in the limit the test always rejects if Ho is
not true



Under local alternatives p Pot Urn we have that
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The power function indexed by J is given by
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Overidtest

suppose we want to test Ehilei o
ext

We may use the criterion function
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Write
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Under local alternatives we get normals around n J
Hence the non centrality parameter is
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